69 research outputs found

    What fraction of stars formed in infrared galaxies at high redshift?

    Full text link
    Star formation happens in two types of environment: ultraviolet-bright starbursts (like 30 Doradus and HII galaxies at low redshift and Lyman-break galaxies at high redshift) and infrared-bright dust-enshrouded regions (which may be moderately star-forming like Orion in the Galaxy or extreme like the core of Arp 220). In this work I will estimate how many of the stars in the local Universe formed in each type of environment, using observations of star-forming galaxies at all redshifts at different wavelengths and of the evolution of the field galaxy population.Comment: 7 pages, 0 figs, to appear in proceedings of "Starbursts - From 30 Doradus to Lyman break galaxies", edited by Richard de Grijs and Rosa M. Gonzalez Delgado, published by Kluwe

    A multiwavelength study of the supernova remnant G296.8-0.3

    Full text link
    We report XMM-Newton observations of the Galactic supernova remnant G296.8-0.3, together with complementary radio and infrared data. The spatial and spectral properties of the X-ray emission, detected towards G296.8-0.3, was investigated in order to explore the possible evolutionary scenarios and the physical connexion with its unusual morphology detected at radio frequencies. G296.8-0.3 displays diffuse X-ray emission correlated with the peculiar radio morphology detected in the interior of the remnant and with the shell-like radio structure observed to the northwest side of the object. The X-ray emission peaks in the soft/medium energy range (0.5-3.0 keV). The X-ray spectral analysis confirms that the column density is high (NH \sim 0.64 x 10^{22} cm^{-2}) which supports a distant location (d>9 kpc) for the SNR. Its X-ray spectrum can be well represented by a thermal (PSHOCK) model, with kT \sim 0.86 keV, an ionization timescale of 6.1 x 10^{10} cm^{-3} s, and low abundance (0.12 Z_sun). The 24 microns observations show shell-like emission correlated with part of the northwest and southeast boundaries of the SNR. In addition a point-like X-ray source is also detected close to the geometrical center of the radio SNR. The object presents some characteristics of the so-called compact central objects (CCO). Its X-ray spectrum is consistent with those found at other CCOs and the value of NH is consistent with that of G296.8-0.3, which suggests a physical connexion with the SNR.Comment: Accepted for publication in Astrophysics & Space Scienc

    Transiting Exoplanets with JWST

    Full text link
    The era of exoplanet characterization is upon us. For a subset of exoplanets -- the transiting planets -- physical properties can be measured, including mass, radius, and atmosphere characteristics. Indeed, measuring the atmospheres of a further subset of transiting planets, the hot Jupiters, is now routine with the Spitzer Space Telescope. The James Webb Space Telescope (JWST) will continue Spitzer's legacy with its large mirror size and precise thermal stability. JWST is poised for the significant achievement of identifying habitable planets around bright M through G stars--rocky planets lacking extensive gas envelopes, with water vapor and signs of chemical disequilibrium in their atmospheres. Favorable transiting planet systems, are, however, anticipated to be rare and their atmosphere observations will require tens to hundreds of hours of JWST time per planet. We review what is known about the physical characteristics of transiting planets, summarize lessons learned from Spitzer high-contrast exoplanet measurements, and give several examples of potential JWST observations.Comment: 22 pages, 11 figures. In press in "Astrophysics in the Next Decade: JWST and Concurrent Facilities, Astrophysics & Space Science Library, Thronson, H. A., Tielens, A., Stiavelli, M., eds., Springer: Dordrecht (2008)." The original publication will be available at http://www.springerlink.co

    Extragalactic Sources for Ultra High Energy Cosmic Ray Nuclei

    Full text link
    In this article we examine the hypothesis that the highest energy cosmic rays are complex nuclei from extragalactic sources. Under reasonable physical assumptions, we show that the nearby metally rich starburst galaxies (M82 and NGC 253) can produce all the events observed above the ankle. This requires diffusion of particles below 102010^{20} eV in extragalactic magnetic fields B≈15B \approx 15 nG. Above 101910^{19} eV, the model predicts the presence of significant fluxes of medium mass and heavy nuclei with small rate of change of composition. Notwithstanding, the most salient feature of the starburst-hypothesis is a slight anisotropy induced by iron debris just before the spectrum-cutoff.Comment: To appear in Phys. Rev. D, reference adde

    JADES: Resolving the Stellar Component and Filamentary Overdense Environment of Hubble Space Telescope (HST)-dark Submillimeter Galaxy HDF850.1 at z = 5.18

    Get PDF
    © 2024 The Author(s). Published by the American Astronomical Society. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/HDF850.1 is the brightest submillimeter galaxy (SMG) in the Hubble Deep Field. It is known as a heavily dust-obscured star-forming galaxy embedded in an overdense environment at z = 5.18. With nine-band NIRCam images at 0.8–5.0 ÎŒm obtained through the JWST Advanced Deep Extragalactic Survey, we detect and resolve the rest-frame UV–optical counterpart of HDF850.1, which splits into two components because of heavy dust obscuration in the center. The southern component leaks UV and Hα photons, bringing the galaxy ∌100 times above the empirical relation between infrared excess and UV continuum slope (IRX–ÎČ UV). The northern component is higher in dust attenuation and thus fainter in UV and Hα surface brightness. We construct a spatially resolved dust-attenuation map from the NIRCam images, well matched with the dust continuum emission obtained through millimeter interferometry. The whole system hosts a stellar mass of 1010.8±0.1 M ⊙ and star formation rate (SFR) of 102.8±0.2 M ⊙ yr−1, placing the galaxy at the massive end of the star-forming main sequence at this epoch. We further confirm that HDF850.1 resides in a complex overdense environment at z = 5.17–5.30, which hosts another luminous SMG at z = 5.30 (GN10). The filamentary structures of the overdensity are characterized by 109 Hα-emitting galaxies confirmed through NIRCam slitless spectroscopy at 3.9–5 ÎŒm, of which only eight were known before the JWST observations. Given the existence of a similar galaxy overdensity in the GOODS-S field, our results suggest that 50% ± 20% of the cosmic star formation at z = 5.1–5.5 occur in protocluster environments.Peer reviewe

    The IMF in Starbursts

    Full text link
    The history of the IMF in starburst regions is reviewed. The IMFs are no longer believed to be top-heavy, although some superstar clusters, whether in starburst regions or not, could be. General observations of the IMF are discussed to put the starburst results in perspective. Observed IMF variations seem to suggest that the IMF varies a little with environment in the sense that denser and more massive clusters produce more massive stars, and perhaps more brown dwarfs too, compared to intermediate mass stars.Comment: 8 pages, to be published in ``Starbursts: from 30 Doradus to Lyman Break Galaxies,'' held at Institute of Astronomy, Cambridge University, UK, September 6-10, 2004. Kluwer Academic Publishers, edited by Richard de Grijs and Rosa M. Gonzalez Delgad

    Young and Intermediate-age Distance Indicators

    Full text link
    Distance measurements beyond geometrical and semi-geometrical methods, rely mainly on standard candles. As the name suggests, these objects have known luminosities by virtue of their intrinsic proprieties and play a major role in our understanding of modern cosmology. The main caveats associated with standard candles are their absolute calibration, contamination of the sample from other sources and systematic uncertainties. The absolute calibration mainly depends on their chemical composition and age. To understand the impact of these effects on the distance scale, it is essential to develop methods based on different sample of standard candles. Here we review the fundamental properties of young and intermediate-age distance indicators such as Cepheids, Mira variables and Red Clump stars and the recent developments in their application as distance indicators.Comment: Review article, 63 pages (28 figures), Accepted for publication in Space Science Reviews (Chapter 3 of a special collection resulting from the May 2016 ISSI-BJ workshop on Astronomical Distance Determination in the Space Age

    The Kuiper Belt and Other Debris Disks

    Full text link
    We discuss the current knowledge of the Solar system, focusing on bodies in the outer regions, on the information they provide concerning Solar system formation, and on the possible relationships that may exist between our system and the debris disks of other stars. Beyond the domains of the Terrestrial and giant planets, the comets in the Kuiper belt and the Oort cloud preserve some of our most pristine materials. The Kuiper belt, in particular, is a collisional dust source and a scientific bridge to the dusty "debris disks" observed around many nearby main-sequence stars. Study of the Solar system provides a level of detail that we cannot discern in the distant disks while observations of the disks may help to set the Solar system in proper context.Comment: 50 pages, 25 Figures. To appear in conference proceedings book "Astrophysics in the Next Decade

    Star Formation and Dynamics in the Galactic Centre

    Full text link
    The centre of our Galaxy is one of the most studied and yet enigmatic places in the Universe. At a distance of about 8 kpc from our Sun, the Galactic centre (GC) is the ideal environment to study the extreme processes that take place in the vicinity of a supermassive black hole (SMBH). Despite the hostile environment, several tens of early-type stars populate the central parsec of our Galaxy. A fraction of them lie in a thin ring with mild eccentricity and inner radius ~0.04 pc, while the S-stars, i.e. the ~30 stars closest to the SMBH (<0.04 pc), have randomly oriented and highly eccentric orbits. The formation of such early-type stars has been a puzzle for a long time: molecular clouds should be tidally disrupted by the SMBH before they can fragment into stars. We review the main scenarios proposed to explain the formation and the dynamical evolution of the early-type stars in the GC. In particular, we discuss the most popular in situ scenarios (accretion disc fragmentation and molecular cloud disruption) and migration scenarios (star cluster inspiral and Hills mechanism). We focus on the most pressing challenges that must be faced to shed light on the process of star formation in the vicinity of a SMBH.Comment: 68 pages, 35 figures; invited review chapter, to be published in expanded form in Haardt, F., Gorini, V., Moschella, U. and Treves, A., 'Astrophysical Black Holes'. Lecture Notes in Physics. Springer 201
    • 

    corecore